Analyzing Angles

We know what angles 1 and 2 are in terms of x, so we need to figure out how they are related to each other. One thing to note in the picture is that lines $A B$ and $C E$ are parallel since they are both perpendicular to line $A C$. We can see from the picture that $\angle 1$ is congruent to $\angle D B A$ because they are alternate interior angles (with BC as the transversal).

Now we can see that $\angle 2$ is supplementary to $\angle D B A$. So, $\angle 2$ must be supplementary to $\angle 1$ as well (since 1 and DBA are congruent). This means we can make the following equation, which we can solve forx:

```
\(m \angle 1+m \angle 2=180^{\circ}\)
\((2 x+10)+(5 x-40)=180\)
\(7 x-30=180\)
\(7 x=210\) so \(x=30\)
```

We can use this to find the measures of angles 1 and 2.

```
m\angle1=2x+10 m}\angle2=5x-4
m\angle1=2(30)+10 m\angle2 = 5(30)-40
m\angle1=70}\quadm\angle2=110
```

We know that this is correct since $70+110=180$, which is as it should be.

Now we need to find the measure of angle 3 . We can see that $\angle 3 \cong \angle D A B$, since they're vertical angles. We know the measures of angles DBA and BDA, and we know that the sum of the measure of the angles in a triangle is 180 . So, we can write the following equation, which we can solve for $\angle D A B$.

```
m\angleDBA+m\angleBDA+m\angleDAB=180
70+60+m\angleDAB=180
130+m\angleDAB=180
m\angleDAB=50}\mathrm{ so }m\angle3=5\mp@subsup{0}{}{\circ
```

Extra: If we don't know the measure of angle 4, we can't find the angle measure of angle 3. But, we can say some things about its angle measure.

We assume that E is on the same side of CA as B is, and that it's still on the purple line (from C). First, angle 3 must be between 0 and 90 . We also know that $m \angle 2=m \angle 4+m \angle 3$ (actually the vertical angle to 3 , but we'll just call it 3), since the exterior angle of a triangle equals the sum of a remote interior angles. Therefore, $m \angle 3+m \angle 4=$ 100°. Beyond that, we can't say much.

